PLEASURE TEST REVISION SERIES MATHEMATICS

Time: 180 Minutes

CBSE

Examinations 2012-2013

General Instructions:

Max. Marks: 100

- a) Note that all the questions are compulsory.
- b) The question paper consists of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each, and Section C comprises of 7 questions of six marks each. All question

By: OP GUPTA (+91-9650 350 480)

- c) ns in section A are to be answered in one word, one sentence or as per the exact requirements of the question.
- d) There is no overall choice. However internal choice has been provided in some of the cases.

SECTION – A

Q01. If
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = (7 - x^5)^{1/5}$, then find $fof(x)$.

Q02. Evaluate:
$$\int \frac{1}{\left[\sqrt{1-x^2} \left(16-\sin^{-1}x\right)^{1/2}\right]} dx$$

Q03. Write one of the range of $cosec^{-1}x$ other than its principal branch.

Q04. In the matrix equation
$$\begin{pmatrix} 11 & 16 \\ 7 & 10 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, apply $C_2 \rightarrow C_2 - C_1$ on both the sides.

Q05. Evaluate:
$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$$

 $\lceil 1 \rceil$

Q06. If
$$A = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 then, find AA' .

Q07. If $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$ and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ then, find the angle between \vec{a} and \vec{b} .

Q08. Evaluate: $\int [x] dx$, where [x] represents a greatest integer function.

Q09. If '*' is a binary operation defined on R and if $a * b = \frac{ab}{2}$, write the value for (4*2)*6. **Q10.** For a vector equiangular with the coordinate axis, write its direction cosines.

SECTION - B

Q11. Show that:
$$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi = 2\left(\tan^{-1}(1) + \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)\right).$$

OR Prove that: $\tan\left[\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right] + \tan\left[\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right] = \frac{2b}{a}.$
Q12. Using properties of determinants, evaluate: $\begin{vmatrix} (x-2)^2 & (x-1)^2 & x^2 \\ (x-1)^2 & x^2 & (x+1)^2 \\ x^2 & (x+1)^2 & (x+2)^2 \end{vmatrix}$.

Sample Test Paper On Mathematics For Class XII - By OP Gupta [+91-9650 350 480]

Q13. If
$$\sqrt{1-x^6} + \sqrt{1-y^6} = a^3 (x^3 - y^3)$$
 then, show that $\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$.
OR If $y = x \log \left(\frac{x}{a+bx}\right)$, then show that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$.

Q14. Prove that the sum of intercepts of the tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ upon the coordinate axes is of constant length.

Q15. If $x^p \cdot y^q = (x+y)^{p+q}$ then, prove that $\frac{dy}{dx} = \frac{y}{x}$. Hence show that $\frac{d^2y}{dx^2} = 0$.

Q16. Evaluate: $\int_{0}^{1} \tan^{-1} \left(\frac{2x-1}{1+x-x^2} \right) dx$.

OR

Evaluate:
$$\int_{0}^{1} \cot^{-1} (1-x+x^{2}) dx$$
.

Q17. Solve: $y \sin x \frac{dy}{dx} = \cos x \left(\sin x - \frac{y^2}{2} \right), y \left(\frac{\pi}{2} \right) = 1.$

Q18. Find a point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of $3\sqrt{2}$ units from the point (1, 2, 3).

Q19. a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18}$. Is f a one- one function?

b) Find the range of $f(x) = \frac{|x-3|}{|x-3|}$.

Q20. Decompose the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ into the vectors which respectively are parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$.

OR If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} - \hat{k}$ then, find a vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

Q21. Find $P(|x-4| \le 2)$ if x follows a Binomial Distribution with the mean 4 and variance 2.

Q22. Solve the differential equation: $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)\frac{dx}{dy} = 1, x \neq 0.$

OR Solve the differential equation: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.

SECTION - C

- **Q23.** A point P is given on the circumference of a circle of radius *r*. A chord QR is parallel to the tangent line at P. Find the maximum area of the triangle PQR.
- Q24. Solve the following system of equations using matrix:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0.$$
OR Find the inverse of
$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$
 using elementary transformations.

- **Q25.** Using integration, find area of the triangle formed by positive *x*-axis and the tangent and the normal to the curve $x^2 + y^2 = 4$ at $(1, \sqrt{3})$.
- **Q26.** An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 bus drivers. The probability of an accident involving a scooter, a car and a bus are respectively 0.01, 0.03 and

0.15. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

Q27. Find the distance of the point P(-2,3,-4) from the line $\frac{x+2}{3} = \frac{2y+3}{4} = \frac{3z+4}{5}$ measured parallel to the plane 4x + 12y - 3z + 1 = 0.

OR Find the distance of the point P(1, -2, 3) from the plane x - y + z = 5 measured parallel

to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$.

Q28. There are two types of fertilizers F₁ and F₂. F₁ consists of 10% nitrogen and 6% phosphoric acid and F₂ consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14kg of nitrogen and 14kg of phosphoric acid for her crop. If F₁ costs Rs 6/kg and F₂ costs Rs 5/kg, determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?

Q29. Evaluate the integral:
$$\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$$

ANSWERS OF PLEASURE TES REVISION SERIESQ01. xQ02. $-2\sqrt{16-\sin^{-1}x} + k$ Q03. $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right] - \{\pi\}$ Q04. $\begin{bmatrix} 11 & 5\\ 7 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3\\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 3 & 1 \end{bmatrix}$ Q05. $a^2 + b^2 + c^2 + d^2$ Q06. $\begin{bmatrix} 1 & 2 & 3\\ 2 & 4 & 6\\ 3 & 6 & 9 \end{bmatrix}$ Q07. $\frac{\pi}{3}$ Q08. $\frac{1}{2}$ Q09. 12Q10. $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$ Q12. -8Q16. 0QR $\frac{\pi}{2} - \log 2$ Q17. $y^2 = \sin x$ Q18. $(-2, -1, 3), \left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$ Q19.a) No(b) $\{-1,1\}$ Q20. $-\hat{i} - \hat{j} - \hat{k}, 7\hat{i} - 2\hat{j} - 5\hat{k}$ QR $\frac{1}{3}(5\hat{i} + 2\hat{j} + 2\hat{k})$ Q21. $\frac{119}{128}$ Q22. $y = (2\sqrt{x} + k)e^{-2\sqrt{x}}$ QR $2\tan y = x^2 - 1 + ke^{-x^2}$ Q23. $\frac{3\sqrt{3}}{4}r^2$ sq.unitsQ24. x = 2, y = 3, z = 5QR $\begin{bmatrix} 1 & -2 & -3\\ -2 & 4 & 7\\ -3 & 5 & 9 \end{bmatrix}$ Q25. $2\sqrt{3}$ sq.unitsQ26. $\frac{1}{52}$ Q27. $\frac{17}{2}$ unitsQR1 unitQ28. Fertilizer F1: 100kg ; fertilizer F2: 80kg ; Minimum cost: Rs.1000Q29. $\sqrt{1-x}(\sqrt{x}-2) - \sin^{-1}\sqrt{x} + k$

May God bless you all... Good luck!

For solved papers of previous years, please visit at: www.theOPGupta.blogspot.com
Visit my blog for some inspirational stuff at: www.theOPGupta.blogspot.com